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Abstract— Intelligent and reliable task planning is a core
capability for generalized robotics, requiring a descriptive
domain representation that sufficiently models all object and
state information for the scene. We present CLIMB, a continual
learning framework for robot task planning that leverages
foundation models and execution feedback to guide domain
model construction. CLIMB can build a model from a natural
language description, learn non-obvious predicates while solving
tasks, and store that information for future problems. We
demonstrate the ability of CLIMB to improve performance
in common planning environments compared to baseline
methods. We also develop BlocksWorld++ domain, a simulated
environment with an easily usable real counterpart, together with
a curriculum of tasks with progressing difficulty for evaluating
continual learning. Code and additional details for this system
can be found at https://plan-with-climb.github.io/.

I. INTRODUCTION

For decades roboticists have pursued the aim of generalized,
flexible robots that can solve complex tasks in novel envi-
ronments. Recent advances in foundation models [1] have
shown promising results for their use in world modeling
[2–4], task planning [5–8], and motion planning [9–11].
These works leverage the extensive background knowledge
present in the foundation model’s pre-training to provide
incomplete but useful solutions to these challenging tasks.
Though incomplete, results can be further refined through
repetition, prompt engineering, or post-processing to improve
success rates.

While interest in fundamental research has been plentiful,
foundation model-guided planners have yet to find regular
use in practical application scenarios. This hesitance has
been largely derived from the inconsistencies of output for
many foundation models. Some research has shown that the
direct application of foundational models for task planning
yields subpar results [12], where critics argue foundation
models provide an “approximate retrieval” of information
and are incapable of explicit logical reasoning or planning.
This observation suggests that a more sophisticated structure
is required in order to leverage the extensive corpus of
foundation models effectively.

In this paper, we present CLIMB, Continual Learning for
Iteractive Model Building. CLIMB is a hybrid neuro-symbolic
planning system that makes use of both foundation models and
classical symbolic planners to achieve planning proficiency.
Given the limitations of both classical search-based planners
and end-to-end learning models, a neuro-symbolic approach
is required to address complex planning problems reliably.
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def clear(b, world_state):
for o in world_state["objects"]:

if abs(o[“pos"]["x"] - b[“pos"]["x"]) < 0.08 and \
abs(o[“pos"]["y"] - b[“pos"]["y"]) < 0.08 and \
o[“pos"]["z"] > b[“pos"]["z"]:

return False
return True
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for o in world_state["objects"]:

if abs(o[“pos"]["x"] - b[“pos"]["x"]) < 0.08 and \
abs(o[“pos"]["y"] - b[“pos"]["y"]) < 0.08 and \
o[“pos"]["z"] > b[“pos"]["z"]:

return False
return True
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Fig. 1: CLIMB is able to predict common world constraints without
ground truth PDDL and can learn domain-specific relationships
through the execution of one or more tasks in the domain. The
framework can self-improve by storing domain and predicate
information across tasks.

Such a hybrid architecture leverages both the structure
of symbolic planning and the learning capabilities and
extensive knowledge base of foundation models effectively.
Additionally, CLIMB incrementally builds a PDDL model of
its operating environment while completing tasks, creating a
set of world state predicates that function as a representation
of the causal structure present in the environment. This
continual learning approach enables CLIMB to solve types of
problems it has previously encountered without the need to
relearn task-specific information and endows it with the ability
to expand its environment representation to novel problem
formulations. We show CLIMB to be a moderately capable
planner independently, but importantly we demonstrate its
ability to self-improve, resulting in superior performance once
a PDDL model has been established.

The contributions of our work are as follows:
1) We propose CLIMB for learning logical models of the

world and accompanying grounding functions, starting
from simple domain and task descriptions in natural
language and learning and improving through interaction
with the environment.

2) We evaluate CLIMB to generate sensible initial domain
proposals, to improve through interaction and incremental
world model building across several tasks, while simulta-
neously proposing and correcting grounding functions to
connect the logical domain to the continous environments.

3) We propose BlocksWorld++with a curriculum of tasks
to evaluate incremental logical world model-building
capabilities, both in simulation and in the real world.
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II. RELATED WORK

A. Learning-based Planning in Robotics
Learning methods have long been used to model and rep-

resent the object and state interactions in robot environments.
Such pursuits have utilized a range of methods including
unsupervised clustering [13, 14], supervised learning from
demonstration [15], and neural architectures [16]. The level
of human setup and interaction significantly varies between
approaches, with both heavily supervised interaction-based
approaches [4] and fully-unsupervised systems [17] seeing
use.

In addition to learning world relationships and predicates,
the task of grounding continuous state observations to
logical predicates remains a challenge. Both images [18]
and synthesized state representations [19] have been used in
evaluating world state representations. While both approaches
have shown success, the former requires large quantities
of annotated data while the latter necessitates extensive
engineered systems that do not generalize easily.
B. General Planning Capabilities of LLMs

Recent advances in Large Language Models (LLMs) have
shown promising results in their ability to complete logical
reasoning tasks, decompose complex goals into sub-goals,
and ingest large amounts of data. These capabilities are
aided by research into prompting strategies and in-context
learning [20–23], evaluating the best methods for interacting
with these models. Chain-of-Thought [20], tree-of-thoughts
[21], graph-of-thoughts [22], and ReAct [23] examine the
relative performance of prompting structures for complex
reasoning tasks. While LLMs can effectively generate rea-
sonable unstructured natural language outputs, they have
demonstrated poor performance at structured and constrained
tasks including planning [12] without additional structure.
These limitations also occur in embodied environments.
SayCan [24] and Reflexion [25] propose action embedding
and verbal RL to surprising success on text-based tasks.
Unstructured natural language tasks do not easily translate
into most embodied robot paradigms which frequently utilize
discrete actions or task policies with structured interpretations.

Additionally, significant attention has been given to LLMs
applicability towards embodied reasoning in grounded en-
vironments [24, 26]. Recent research demonstrates some
ability for LLMs to solve some classes of planning problems
directly. However, planning performance of these models is
inconsistent at best and insufficient at worst, with state of
the art planning architectures still critically failing in some
domains (e.g. the floortile domain in [27]). This has led
to significant debate about whether LLMs are capable of
planning in a traditional sense [12]. Hybrid approaches which
utilize both foundation models and symbolic planners are
gaining in popularity, as they are able to leverage the strengths
of both approaches [4, 7, 27–29].
C. Continual/Lifelong Learning for Planning

Lifelong or Continual Learning (CL) presents a significant
challenge for training wherein all data is not collected a
priori [30]. It is essential for robots operating in complex

and loosely structured environments (e.g. in the home) to
augment their training sets as they operate. Mendez et al.[31]
have looked at CL paradigms utilizing diffusion models as
samplers in a bi-level TAMP framework. They propose the
CL problem as one of compositionality [32], as opposed to
most other research which follows more traditional train and
test datasets.

III. PROBLEM STATEMENT

CLIMB framework utilizes the following as input:
1) Domain description: Given in natural language, in order

to provide the general context of the environment the
system is operating in.

2) Logical actions: A set of predefined low-level primitives
that the system can use to interact with the world, defined
as python function signatures.

3) Tasks to complete: Given in natural language, a set of
tasks for the system to complete and represent into its
single logical world model. These tasks also serve as
the curriculum to enables the logical planner to find a
generalized representation that can solve new instances of
such tasks.

4) (optional) Previous world model: In case the approach
has already been run in the same domain, we can take the
resulting logical world model and expand it with additional
predicates for completing more varied and complex tasks.

Using these inputs, CLIMB achieves two goals:
1) Solving the planning tasks: Through repeated execution

in the domain, analysis of failures, and fixing errors in
generated plans or predicates, the goal of the system is to
incrementally solve the entire list of tasks while acquiring
knowledge about how the environment functions through
the process.

2) Building an incremental logical world model: While
solving individual tasks the system reuses and expands
upon the logical world model produced from previous
tasks. Upon completion of all individual tasks, we are left
with a model that can be used to planning solutions for
new instances of similar tasks. This model (domain and
predicates) can be used as a prior in future executions of
this pipeline on new sets of tasks with the same robot
embodiment.

IV. CLIMB: MODEL STRUCTURE

Overview – The overall architecture for the framework is
presented in Figure 2. CLIMB is comprised of modules
that generate the PDDL, construct a plan trace for the
given problem, observe the robot’s performance, and re-
fine the PDDL through observation and queried solutions
from the LLM. Each of the LLM modules utilizes the
gpt-4o-2024-08-06 model from OpenAI.

Implementation details and full prompts for each of the
modules can be found at https://plan-with-climb.github.io/.
A. Language-Model-Guided Domain Generation
CLIMB uses four modules to interface with an LLM:
Domain and Problem Generation – The domain-specific
language (DSL) generation module converts a given domain

https://plan-with-climb.github.io/
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def on(b, u, world_state):
pos_b = world_state[b]['position']
pos_u = world_state[u]['position']
size_u = world_state[u]['size']
return (

abs(pos_b[0] - pos_u[0]) <= 0.02 and
abs(pos_b[1] - pos_u[1]) <= 0.02 and
abs((pos_b[2] - pos_u[2]) -

size_u[2]) <= 0.02)

def on_table(o, world_state):
# Check z value of object
obj = world_state[o]['position']
if obj[2] > 0.025 + 0.02:

return False
return True

VAL Plan Validation
Plan

Repair

Fig. 2: The CLIMB Planning Framework includes multiple independent modules for problem translation, planning, predicate generation,
verification, execution, and perception.

and problem description in unstructured natural language
to structured PDDL representations. This generated DSL
functions as an estimated representation of a zero-shot world
model for the task planner. The initial generation process
draws inferences about the logical predicates governing
the environment based exclusively on the general world
knowledge contained in the LLM and the user’s description
of the domain.
Input:
1) Domain description (natural language)
2) Atomic actions (function signatures and code)
3) (optional) Stored domain from previous tasks
Output:
1) Domain specific PDDL
2) List of domain predicates to implement

Predicate Grounding and Debugging – This module is used
to generate executable Python functions that convert the
continuous world state observed from the perception API
into a logical predicate set. Grounding predicates allows
us to compare the state of the world after each attempted
action to the simulated logical state represented by the PDDL
model. The comparison of simulated to perceived logical
state serves as the primary error identification mechanism
by which previously unseen relationships and constraints
can be modeled by the predicate inventor. This module
also automatically debugs and corrects syntax errors in
the predicate grounding functions through analysis of error
messages and performing function regeneration if needed.
Input:
1) Domain description (natural language)
2) Continuous state representation (python dict)
3) Existing predicate names and functions
4) Names and descriptions of new predicates
Output:
1) New predicate names and evaluation functions

Predicate Update – When an unexpected logical state is
observed after executing an action, the Predicate Update
module generates plausible explanations for the phenomena
in the form of new or modified predicates. This module’s

inputs include the current predicate set, the problem and plan
that is currently being investigated, and the world state in
which the error occurred. From this information, the language
model is instructed to reason through potential root causes
and proposes an updated predicate set to represent dynamics
in the domain. Any new or modified predicates are then
re-grounded through the Predicate Grounding module.

Input:
1) Generated PDDL domain and problem
2) Generated PDDL plan
3) World state (before and after execution)
4) Natural language error message
Output:
1) New predicate names and descriptions to resolve

error

Plan Repair – After an execution failure and predicate
generation, the Plan Repair module updates the domain
representation to include new predicates and constraints.
Inputs to this module are the previous domain and problem
DSL, the natural language task description, the world state at
failure, and the updated predicate set. This module outputs
an updated DSL domain which includes any new or modified
predicates and an updated problem file to reflect the current
world state. By updating the problem DSL, the system can
recover from unintended consequences of executing infeasible
actions. For example, if a stack of blocks is knocked over
during execution, the initial problem state will be modified
to reflect the fact that these blocks are no longer stacked.

Input:
1) Task description (natural language)
2) Generated domain and problem PDDL
3) List of available actions
4) List of perceived objects in the world
5) Names and descriptions of new predicates to add
Output:
1) Improved PDDL domain and problem utilizing new

predicates
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B. Planning & Perception

PDDL Symbolic planner – To generate the plan trace for a
given problem, we make use of the FastDownward symbolic
planning framework [33] in this study. FastDownward (FD)
takes as input the domain and problem PDDL files generated
for a specific problem and outputs a plan trace for execution.
Internally FD implements a best-first search algorithm with a
“causal graph heuristic” which is derived from the recursive
decomposition of subtasks towards the goal. It is worth noting
that our architecture can make use of any symbolic PDDL
planner; it has additionally been tested using the Fast-Forward
[34] and Pyperplan [35] planning systems. After a plan has
been calculated, we additionally verify syntactic correctness
and adherence to the generated PDDL by processing the
output on the VAL plan validator [36]. VAL is a logical
plan simulator which utilizes the domain and problem file
given to evaluate if the plan is valid within the domain and
correctly solves the task. While VAL is not able to check the
semantic correctness of the domain and problem, it is capable
of ensuring the plan’s validity for the given domain. We use
the Unified Planning library [37] for its implementations of
all of the above planners, VAL integration, and simulated
plan rollout.
BlocksWorld++ Action Set:
• pickup(block o)
• putdown(block o)
• stack(block o, block under)
• unstack(block o, block under)
• place_between(block o, block a, block b)
• stack_on_two(block o, block a, block b)
• place_in_front_of(block o, block ref)
• place_behind(block o, block ref)
• place_to_right_of(block o, block ref)
• place_to_left_of(block o, block ref)

Plan Execution and Skill Library – The plan execution
module wraps a library of executable atomic skills and enables
the execution of generated plans on the environment. The

library of skills is specific to the robot’s morphology and to
an extent, its domain of operation. However, the skill library
should ideally generalize to a variety of tasks within the
same environment. By way of example, above are the actions
utilized in our BlocksWorld++ experimental domain.
Perception API – While the robot executes the plan trace
generated to solve the tasked problem, a domain-specific
perception API is utilized to evaluate if the robot accom-
plished each action successfully. For the real robot system,
we utilize AprilTag2 [38] to observe the position of objects
in the environment and distinguish between blocks. This
perception module can be substituted for any system that
tracks and outputs the 6D pose of objects (e.g. FoundationPose
[39] for unlabeled objects). After each action is attempted,
the perception module collects the state of all objects in
the workspace and the proprioception of the robot. This
continuous world state representation is then evaluated on
the generated predicate functions created by the Predicate
Inventor to determine the estimated logical world state.

V. EXPERIMENTS

The goal of our experiments aims to evaluate the following
hypothesis: Can LLMs create robust DSL domains and prob-
lems without feedback from human experts? How effective
are LLMs at representing common world predicates? Can
feedback for predicate learning be generated automatically
and interpreted by the LLM without human intervention? Do
the environment models generated by CLIMB generalize to
new problems within the domain?

We evaluate these questions across logical, simulated, and
real domains, each with separate characteristics.
A. Logical Planning Domains

We first evaluate the performance of our architecture on
three logical plan-level domains: blocksworld [27], grippers
[27], and heavy [8]. These domains provide reasonable



TABLE I: Performance on the Logical Planning Domains CLIMB
demonstrates an ability to generate correct zero-shot plans in some
cases, but importantly the system is able to improve its representation
over successive (maximum of five) attempts to signxificantly improve
performance (N = 60 for each case).

Dataset LLM Plan CLIMB 0-Shot CLIMB Few-Shot

BLW 0.12 0.40 0.80
(0.05, 0.20) (0.28, 0.53) (0.70, 0.90)

GRP 0.10 0.53 0.93
(0.03, 0.18) (0.42, 0.67) (0.87, 0.98)

HVY 0.68 0.17 0.67
(0.57, 0.80) (0.08, 0.27) (0.55, 0.78)

scenarios for generating manipulator plans and provide
points of comparison to related work. As these domains
are already logical (i.e. state of the world our system has
access to is logical), here we are not evaluating the predicate
grounding capabilities of our system. Instead, it allows us to
evaluate the capabilities of the system to propose the initial
domain, improve it based on failure in executing a plan, and
incrementally improve the domain across several tasks in the
domain.
Domain Description –
• Blocksworld This domain tasks the agent to stack and

unstack columns of blocks to match specific configurations.
A popular foundational planning problem, it is likely some
examples of this type of environment are present in the
LLM training corpus.

• Grippers This domain tasks multiple robots to pick up
and transport objects between several different rooms or
areas. This domain includes a logical representation for
robot position requiring the plan to coordinate multiple
robots with one another.

• Heavy This domain tasks the agent to pack a box or crate
with objects, sorting by weight so that heavier objects are
placed below lighter objects.

Correctness of DSL built with Iterative Model Building
– Experiments in the logical domain serve to evaluate the
ability of LLMs to create world representations in DSL. We
evaluate both the zero-shot and few-shot performance of
CLIMB incorporating up to five rollouts (i.e. executions)
and iterations of feedback correction. In the logical domain,
we substitute the execution and perception loop with the
VAL plan validator [36] using a ground truth PDDL domain
and problem. VAL models and simulates plan execution in
the logical predicate space and evaluates both if the overall
plan was successful and, if unsuccessful, where a given error
occurs.

Table I presents the overall success rate in each of the
three evaluated domains along with 95% confidence intervals.
Each domain was evaluated over three iterations of 20
problems, in both zero-shot (maximum one rollout) and few-
shot (maximum five rollouts) scenarios. The results in Table I
demonstrate a moderately capable planner in a zero-shot
setting with an overall performance of 37%. However, overall
performance increases to 80% when the CLIMB framework
can be used to repair and improve the domain from failures.

TABLE II: Blocksworld Predicate Grounding Performance
The LLM demonstrates a capability to generate correct ground-
ing functions for common predicates in Blocksworld. Functions
were evaluated both for syntactic correctness and semantic
correctness with respect to examples with known ground truth. We
find that the relative frequency of syntax errors is generally low, but
we are able to debug to improve performance.

Predicate Zero-Shot With Syntax Fixing

on-table 0.95 1.00
on 0.25 0.45
holding 0.50 0.65
arm-empty 0.10 0.35
clear 0.60 0.80
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Fig. 4: Evaluation of the continual learning capabilities of the
CLIMB framework on the blocksworld logical dataset. The baseline
in this case is the same planner without saving domain and predicate
information between problems. CLIMB with continual learning
significantly outperforms the baseline.

Effect of Continual Learning on Performance –
To evaluate the ability of CLIMB to produce generalized

domain representations, we conduct a comparison of CLIMB’s
continual learning with a baseline. In the baseline case the
planner is still able to execute and learn predicates as in the
full pipeline, however results are not saved between tasks. The
results of this generalization experiment is shown in Figure 4.
By caching the learned domain and predicates between runs,
CLIMB is able to achieve better performance and use 40%
less rollouts to accomplish all tasks in the dataset.

B. Simulated Robot World

BlocksWorld++: IsaacLab Block Manipulation Domain
– We have developed an implementation and extension of
the BlocksWorld problem in Nvidia IsaacLab [40]. This
environment enables us to evaluate our approach on the
BlocksWorld-type domain, but with continuous state variables
and more complex tasks requiring new predicates. We can
evalutate whether a correct logical state can be extracted from
ground truth continuous state information, and whether this
mapping can be iteratively improved based on feedback from
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plan execution in the domain.

Predicate Grounding Function Generation – To evaluate our
predicate generator, we construct grounded predicates from
the correct ground truth PDDL domain. We then initialize
the IsaacSim environment, extract the scene information, and
evaluate our generated predicates to construct a perceived
logical world state. This perceived world state is compared
to the ground truth PDDL problem initial state for accuracy.
We evaluate predicate grounding in isolation by asking it to
generate grounding functions for a list of predicates from a
given domain and then comparing the values to the ground
truth logical values along a single task execution. Table II
we show results for 20 independent predicate set generations.
Automated syntax error fixing provides only a minor benefit
in performance. The majority of errors are caused by semantic,
rather than syntactic issues.

Domain Generalization on Blocksworld++ Dataset – Figure 6
demonstrates the ability for CLIMB to expand it’s predicate
set to include knowledge relevant to different classes of
problems with the same robot embodiment. Evaluating on
the BlocksWorld++ dataset, CLIMB is able to quickly learn

simple 1D arrangement in lines on the table. Though more
iterations are required, the system is also able to learn
spanning across two blocks for the 3 block pyramid problem
and more complex horizontal arrangements including an L
shape (combination of line NS and line EW).
C. Physical Robot in the Real-World

Finally, we demonstrate the system in the real world
using the BlocksWorld++ domain. Figure 5 showcases the
BlocksWorld++ curriculum for continual learning evaluation
on real hardware. This environment can serve as a benchmark
to evaluate CLIMB along with other continual learning
paradigms. Moving from simulation to real, the additional
challenges are perception and stochastic motion control. To
address the challenge of perception, we integrate AprilTag2
[38] markers on the cubes and a camera mounted on the
robot gripper. By returning to a home position after each
action, we can gather full pose information for all objects in
the scene. We show examples using this system to evaluate
BlocksWorld++ tasks at https://plan-with-climb.github.io/.

VI. CONCLUSION

In this paper we presented CLIMB, a system for incremen-
tal learning of logical domains and continous-state grounding
functions through interaction. It requires only a general
description of the domain and tasks that need to be solved
and access to a set of low-level primitives. CLIMB generates
an initial planning domain and logical representation of the
task, uses a symbolic planner to solve it, and then learns new
world constraints through observation of discrepencies in the
logical state expected and observed through the predicate
grounding functions.

We evaluate the method capabilities across several logical
domains, showing excellent performance given the limited
information given as a prior. That, through iterative world
interaction and refinement, CLIMB can learn non-intuitive
predicates and world constraints to improve performance
across successive attempts. Furthermore, we develop the
BlocksWorld++ dataset, enabling evaluation of continual
learning frameworks in a unified manner across logical,
simulated, and real domains.

https://plan-with-climb.github.io/
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